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Chapter 6 - Spectral Data Analysis  
 
 
The nature of spectral data 
 
A spectrum (plural: spectra) is large array of numbers providing rich information on any 
of a number of topics.  The size and dimensionality of large spectral datasets provide 
many challenges for analysis, some of which will be briefly discussed in this chapter, 
which focuses on common analytical methods applied in plant spectroscopy. 
 
A spectrum can be represented and visualized several ways: 
 

1) Spectral plot - in this view, variation of a spectrum is shown as a function of 
wavelength. This can be represented graphically or in tabular form (figure 1).  
Multiple spectra represented in tabular form can also be considered an array or a 
matrix. 

2) Feature (or spectral) space - this displays the value of a spectrum (or pixel) in 
one “band” or wavelength against the value of the same spectrum (or pixel) in 
another band or wavelength. Figure 2a is a 2-dimensional feature space (meaning 
that we are displaying the values in two bands), and figure 2b is a 3-dimensional 
feature space (meaning that we are displaying values in three bands). Figure 2b 
shows the two different spectra represented this way. In this representation, 
spectra can also be thought of vectors, and two spectra can be compared by their 
distance or similarity in N-dimensional feature space.  While mathematics can 
easily represent spectra in multiple dimensions, the challenge lies in visualizing 
spectra beyond 3 dimensions, which lies beyond normal human intuition. 

3) Image cubes (e.g., from imaging spectrometers; see figure 3). Each image pixel 
represents a spectrum of specific location on the surface (e.g., ground or canopy) 
recorded by the sensor. An image cube combines an image (X-Y axes) with a 
spectral (Z axis) representation of imaging spectrometry data from ground, 
airborne or spaceborne platforms in the form of images composed of elements 
called pixels.  

 
Figure 1.  
Reflectance 
spectrum of a 
Douglas-fir 
(Pseudotsuga 
menziesi) needle, 
plotted (left) and 
expressed in 
tabular form 
(right) as a 
function of 
wavelength (λ). 

 

λ (nm) Reflectance 

402.43 0.11042 

405.77 0.10560 

409.1 0.10013 

412.43 0.09791 

415.76 0.09789 

419.09 0.09859 

… … 

997 0.46476 
 

 
Bands vs. wavelengths – These similar terms actually have slightly different meaning.  
Wavelengths are usually expressed in wavelength units (e.g. nm or μm).  Bands (also 
called wavebands, spectral bands or channels) are often called by spectral region (e.g. 
visible, near-infrared) or by band number (e.g. MODIS bands 1 and 2), which 
correspond to a specified wavelength range, usually with a particular response function 
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and characteristic FWHM.  Because many sensors cannot record data in all wavelengths, 
they record spectral data in specified ranges of wavelengths (bands or channels). By 
contrast, hyperspectral sensors sample many contiguous bands across a spectrum over a 
given range of wavelengths (e.g., ~400-1000 nm in the case of VIS-NIR, or ~400-2500 
in the case of VIS-SWIR, or “full-range” instruments).  
 
 When expressing spectra as vectors, the direction of the spectrum conveys 
information about the shape of the spectrum (and thus the identity of the target) and the 
length of the vector conveys information about the absolute value (e.g. the brightness of 
the target) (figure 2).  While conceptually challenging (it is hard to visualize N-
dimensional space), recognizing the vector nature of spectra can assist in data 
management and provide many powerful tools for analyzing spectral data.  To use the 
full power of this concept, we often use linear algebra in processing spectral data. 
 

  
Figure 2a – A spectrum as a vector in 2-D space (left) and 3-D space (right).  Axes indicate reflectance (ρ) 
in wavebands 1, 2, and 3 (λ1, λ2, λ3). 
 
 

  
Figure 2b.  Two spectra as vectors in 2-D space (left) and 3-D space (right).  Axes indicate reflectance (ρ) 
in wavebands (or wavelength) 1, 2, and 3 (λ1, λ2, λ3).  Figure: H. Gholizadeh. 
 



	 3	

 
 

Figure 3. Pushbroom imaging spectrometer mounted on a cart and track (“tram system”).  X indicates the 
scanline direction. The motion of the spectrometer in the Y direction builds an image line-by-line. Each 
pixel in the resulting image cube (right) is also a spectrum (reflectance values shown as different rainbow 
colors, purple being low, and red being high reflectance), with wavelength depicted along the Z axis. On 
the X-Y face of this image cube, the scene is depicted at a “true-color” RGB image, with colors 
approximating those seen with the eye of a human observer viewing the ground surface. Using image 
processing, individual bands can be assigned to RGB in multiple ways to yield a true or false color image. 
 

 
Figure 4.  Alternate representation of the image cube (see Figure 3) as a 2-dimensional image, with 
spectra of individual scene objects (small cluster of pixels) shown as spectral plots (reflectance as a 
function of wavelength).   

 
 
Challenge of data volume - One of the challenges of spectral data is the sheer volume of 
the data.  Each spectrum obtained when capturing spectral data with a spectrometer (or 
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each pixel in an imaging spectrometer) can be comprised of hundreds or thousands of 
values (i.e., an array), depending upon the instrument and its spectral resolution.  In a 
statistical sense, a spectrum of this size represents only a single independent sample.  As 
an illustration, in a single spectrum collected with a hyperspectral instrument, the 
reflectance values of two adjacent bands are not truly independent and are likely to 
contain similar information about the target.  Thus, a spectrum is best thought of as a set 
of related values that together contain information about shape and brightness 
(analogous to a vector with a direction and magnitude).  When collecting multiple 
samples through time or space, a small spectral dataset can quickly and easily expand to 
include millions of numeric values, requiring consideration of large data volumes. 
 
Data reduction (dimension reduction): 
 
To keep datasets manageable, remove redundant data, and to help visualize data, a 
number of data reduction methods exist. Data reduction methods fall into two general 
categories: 1) band selection (choosing of a subset of bands from all available bands), 
and 2) feature extraction (transforming the data to extract new features and reduce the 
data volume).  These different methods (band selection and feature extraction) each have 
advantages and disadvantages.  
 
Band Selection: 
 
Band selection preserves the original data values and is conceptually and mathematically 
simple.  Band selection is used for selecting a subset of existing bands without a 
transformation; therefore, preserving the general spectral shape and greatly reducing the 
data volume. In band selection we try to select the best subset of original bands to get 
the highest possible accuracy for our desired application, for example classifying 
spectral data. One approach for band selection is to conduct an exhaustive search of all 
possible bands. In this approach, the “best” subset of bands is found by: 1) trying all 
possible combination of bands, and 2) evaluating all of these combinations using a 
criterion or fitness function (for example classification accuracy metric or correlation 
coefficient) to find the “goodness” of each of these subsets, until finding the best subset 
of bands. Other examples of well-known band selections strategies are sequential 
forward selection, and sequential backward selection (Devijver & Kittler, 1982). 
 Band selection is the first step in calculating a spectral index, which turns a 
spectrum into a single numeric value, or “index,” that (hopefully) best represents a 
desired feature of the target.  Band selection discards some of the spectral information, 
can miss fine spectral detail, and can be readily biased by preconceived notions of “what 
is important” in a particular spectrum.   
 We also perform something similar to band selection when we subset or 
resample a spectral data set (figure 5).  While this reduces data volume, it clearly loses 
information present in the original spectrum. 
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Figure 5.  Douglas-fir needle spectrum 
before (black solid line) and after (red 
dotted line) subsetting.  In this case, values 
at 50-nm intervals were retained, losing 
fine spectral detail (e.g. slope information), 
but retaining the general spectral shape and 
overall brightness (albedo). 

 
 
Spectral Indices: 
 
When working with spectral data, it is common to select a subset of bands for further 
calculation and analysis. A common example involves band selection for spectral index 
calculation (Singular: index. Plural: indices).  Spectral indices (also called reflectance 
indices, or vegetation indices) are simply mathematical expressions of two or more 
bands.  Two of the more common expressions are band ratios, and normalized difference 
indices 
 
  Ratio = ρ1/ ρ2      (eq. 1) 
 
  Normalized difference index = (ρ1-ρ2)/(ρ1+ρ2) (eq. 2) 
 
Where ρ indicates reflectance at a given waveband or wavelength. 
 
An example of the first is the “Simple Ratio,” a vegetation greenness index that is the 
ratio of NIR reflectance (ρNIR) to red reflectance (ρred).  An example of the second is the 
Normalized Difference Vegetation Index (NDVI), a vegetation greenness index that is 
the most widely used vegetation index, which uses the difference divided by the sum of 
a red and near-infrared (NIR) band. Not surprisingly, the Simple Ratio and NDVI 
provide identical information about vegetation, but in two slightly different ways 
(Gamon et al. 1995) 
 Literally hundreds of indices have been defined and published for vegetation, 
measuring any of a number of features including plant “greenness” (e.g. simple ratio or 
NDVI), plant water content (e.g. water index), plant pigment content, and biochemical 
content.  Table 1 lists a few commonly used vegetation indices and their uses. Many 
indices are intended to measure a particular physiological or structural feature of 
vegetation, many of which can be thought of as characteristic “plant traits.”   
 
Table 1 – Examples of some commonly used vegetation indices, their formulas, applications and sources.   
 

Index Formula Application Reference 
Normalized 
Difference 
Vegetation Index 
(NDVI) 

(ρNIR-ρred)/ (ρNIR+ρred) Vegetation greenness Gamon et al. 1995 

Simple Ratio ρNIR/ρred Vegetation greenness Gamon et al. 1995 
Enhanced Vegetation 
Index (EVI)  

Vegetation greenness Huete et al. 2002 

Chlorophyll Index (ρ750-ρ705)/ (ρ750+ρ705) Chlorophyll content Gitelson & Merzlyak 
1994, Sims & Gamon 
2002 
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MERIS Terrestrial 
Chlorophyll Index 

(ρ753.75-ρ708.75)/ (ρ708.75+ρ681.25) Chlorophyll content Dash & Curran 2007 

Photochemical 
Reflectance Index 
(PRI) 

(ρ531-ρ570)/ (ρ531+ρ570) Xanthophyll cycle & 
photosynthetic efficiency 
(fast response); 
chlorophyll/carotenoid 
ratios (slow response) 

Gamon et al. 1992, 
1993, 1997 

Water Index ρ 900/ρ970 Plant water content Peñuelas et al. 1993 
NDWI (ρNIR-ρSWIR)/ (ρNIR+ρSWIR) Plant water content Gao, 1996 
Soil-Adjusted 
Vegetation Index 
(SAVI) 

(1+L)( ρNIR-ρRed)/(ρ NIR+ρRed+L) Vegetation greenness, after 
correction for soil 

Huete 1988 

 
Since a waveband can be narrow or broad, the same formula can have different 
numerical values depending upon the exact instrument (and band definition) used.  For 
example, a red band at 670 nm with a full-width-half-maximum (FWHM) of 1 nm yields 
a slightly different NDVI value than another red band centered at the same wavelength 
but with a FWHM of 10nm. For these reasons, it is always good to define not only the 
wavelength of a particular band center, but the FWHM or the spectral response function 
(if available) of that band.   
 To make the spectra or indices from two instruments more readily comparable, it 
is often helpful to first convolve the band responses of the two instruments, which 
involves matching the spectral responses of the two instruments mathematically.  A 
good convolution will make the resulting index values of the two instruments more 
similar when sampling the same target. With instruments having several broad bands 
with gaps in between, it can be difficult or impossible to closely match index values.  
With hyperspectral instruments having narrow bands, convolution can be a necessary 
but easy task (many image processing and mathematical or statistical software have 
built-in routines for spectral convolution). Band convolution can also be a useful step in 
simulating a broadband (e.g. satellite) index from hyperspectral sensors  
 
Feature extraction: 
 
 In contrast to band selection, feature extraction uses mathematical transformations to 
extract useful information about a spectral dataset while greatly reducing the original 
data volume.  As an example of feature extraction, principal component analysis (PCA) 
transforms a spectral dataset by “rotating” the spectra in multi-dimensional data space, 
to re-express the data according to a smaller number of orthogonal “principal 
components” that represent the axes of greatest variability of the spectrum (Figure 6) 
(Jolliffe 2002). Before transformation, the data are highly dependent (Figure 4 - left) and 
after PCA transformation, they are completely independent (orthogonal) meaning that 
the values of PC1 change independently from values of PC2 (Figure 6 - right).  
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Figure 6. Data before (left) and after (right) PCA transformation.  Each data point represents a single 
spectrum (or vector) before (left) and after (right) rotation, as represented in 2-D.  Figure: H. Gholizadeh. 
 
 

  
Figure 6.  The same transformation of spectra (figure 4), illustrated in 3D.  In this case, a set of spectra 
(represented as a set of data points in wavelength space, left) are transformed (rotated) to obtain the 
transformed dataset shown in “principal components space” (right).  Figure: H. Gholizadeh. 

 
PCA is often applied to a set of reflectance spectra to identify the primary components 
of variability within the data.  To do this, PCA mathematically “rotates” a spectrum in 
feature space to find the primary (principal) axes of variability.  The first axis represents 
the direction of primary variability or maximum variance (the first eigenvector). The 
second axis is, by definition, orthogonal to the first and represents the direction of 
secondary variability (the second eigenvector).  In PCA this process is repeated until the 
desired number of components (eigenvectors) are identified.  Typically, 3-5 components 
define well over 90% of the variability, so it is often common to use only the first few 
components (See figure 6) in data reduction.  However, sometimes useful information is 
present beyond the first few components, so the exact number of components can 
depend upon the application. The human brain easily visualizes two or three dimensions 
and cannot readily perceive multi-dimensional data volumes above three dimensions, so 
the top two or three PCs are typically visualized, often capturing most of the variation in 
the data (figure 7).   

It is worth noting that PCA can in principle obtain as many components (or 
eigenvectors) as the number of wavebands (bands). It is possible that meaningful 
information can be “buried” way past the third component.  This is often true when 
considering plant traits that can be detected with subtle absorption features in reflectance 
spectra. The first few components of a PCA typically provide information on 
illumination (brightness) and canopy structure (e.g. greenness), with subsequent 
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components yielding progressively more information on subtle absorption features.  
Thus, the exact method and which components to use will depend in part upon the goal.  

Determining which PCs to use and how can be a difficult judgement due to the 
abstract nature of the data transformation.  One way to assign meaning to PCs from a 
spectral dataset is to plot the component “loadings” or “weightings” for each wavelength 
as a coefficient spectrum.  Also called factor score coefficients, these loadings represent 
the correlations between the transformed (rotated) axes, and the original axes 
(wavelengths).  This allows the expression of each component in the original 
(wavelength) space, sometimes facilitating the identification of the cause of variability.  
For example, in developing the formula for the Photochemical Reflectance Index, 
Gamon et al (1992) used PCA and concluded that the first PC was primarily associated 
with brightness, and the second component with greenness, based on their spectral shape 
and location.  The third component contained information on the relative levels of 
xanthophyll cycle pigments and helped reveal the wavelength of interest.  By relating 
transformed data back to the original wavelengths in this way, meaning can be attributed 
to transformed data. Particularly if PCA provides a similar answer to that from 
independent methods, it can be a powerful tool for spectral data exploration. 
 

 

 
Figure 7.  
 
Cumulative percent variance 
explained by the first 5 
components.  Notice how most 
of the variance can be 
explained by a small number 
of PCs.  Figure: H. Gholizadeh 
 

 
PCA is a good example of a transformation that reduces data volume and allows feature 
extraction.  However, because PCA alters the original data, the transformed data cannot 
always be easily related to observable properties of a target or it’s spectrum.  The 
abstract nature of the data transformation associated with feature extraction can present 
special challenges in visualization.  Another limitation of PCA is that it requires more 
cases (replicate samples) than wavelengths to function properly and avoid overfitting.  
Consequently, it sometimes requires very large datasets (many spectra) or band 
subsetting (restricting the spectra to fewer bands than the number of spectra). 
 
Vector normalization: 
 
If the goal is to focus on subtle spectral features, such as absorption associated with 
plant biochemical traits, it is sometimes useful to first remove (normalize for) the effects 
of brightness, which typically appears as the first component of PCA. Vector 
normalization is sometimes used to normalize spectra by their intensity (brightness).  By 
reducing the variation in overall reflectance (or radiance) due to illumination, vector 
normalization can enhance spectral differences due to small features (e.g. absorption 
features associated with plant traits), often making it easier to detect differences in trait 
values between two individuals or in a landscape against a complex background of 
widely varying illumination and canopy structure, as is often found in nature.  The 
potential drawback of vector normalization is that, by altering the original spectral 
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information, it can sometimes miss important features or introduce artifacts into the 
subsequent analysis. For example, vector normalization of vegetation canopy spectra 
removes variation due to sunlit and shaded canopy regions and can lose information 
related to illumination and plant structure but emphasize more subtle plant traits (Wang 
et al. 2022).  
 

 
Figure 8.  VIS-NIR vegetation canopy spectra before (a) and after (b) vector normalization (VN).  Note 
how large differences in brightness (best seen as reflectance in the NIR above 700 nm) are reduced, 
enhancing some of the subtle differences in spectral shape associated in part with pigmentation.  Figure: 
Wang et al. (2022). 

 
Partial Least Squares Regression: 
 
 Because each of the analytical methods applied to spectra offers advantages and 
disadvantages, it is sometimes good to combine methods for additional insight.  For 
example, partial least squares regression (PLSR), which is a combination of principal 
component analysis and multiple linear regression (Wold et al. 2001), is a powerful 
statistical method.  Unlike PCA, PLSR is not compromised by overfitting.  PLSR can 
transform reflectance spectra into a set of coefficients (a “coefficient spectrum”) that 
represents the weightings or relative strength of each wavelength in predicting a variable 
of interest.  Wavelengths that are positively correlated with the variable will have 
positive coefficient values, and wavelengths that are negatively correlated will have 
negative coefficient values.  Wavelengths lacking useful information will have 
coefficient values near zero.  A regression coefficient spectrum plot can provide quick 
insight into which wavelengths might have useful information and provide statistical 
power for a given analysis, and can help select wavelengths that might be good bands 
for a spectral index or for revealing key plant traits.  If PLSR reveals that the same bands 
as those used in a spectral index are important predictor variables, it can provide 
additional, independent confidence in that spectral index.  
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Figure 9. Standardized coefficients for PLSR regression (reflectance vs. chlorophyll 
content).  Wavelengths with large absolute values have a strong weighting (strong 
predictive power for chl).  Figure: H. Gholizadeh. 

 
Continuum removal: 
 
To analyze a particular absorption feature in a reflectance spectrum, it is sometimes 
useful to isolate that feature from the overall spectrum (“continuum”).  Continuum 
removal (Clark and Roush) provides one method to characterize the depth of a particular 
absorption feature. In this method, a line is fit to either side of the feature, and the depth 
can then be measured as the distance from the bottom of the absorption feature to that 
line (figure 10).  Widely used in mineral identification and quantification, this method 
can also useful for quantifying plant biochemical absorption features. 
 

 

Figure 10.  Illustration of continuum 
removal by fitting a line to either side of an 
absorption feature.  The vertical distance 
(red arrow) from the bottom of that feature 
to the fitted line provides a measure of band 
depth.  From Kokaly 2008.  

 
Chlorophyll fluorescence: 
 
Chlorophyll fluorescence is a tiny amount of radiation that is first absorbed by plant 
pigments, then re-emitted at a slightly longer wavelength by plant chlorophyll, and 
provides a useful measure of photosynthetic activity (see Chapters 2, 3& 5).  The 
fluorescence signal from plant leaves and canopies can be measured along with the 
reflected radiance, where is evident as a tiny, dynamic additional contribution to the 
detected radiance (or reflectance).  Because it is so tiny, it is often ignored and 
considered part of the radiance or reflectance signal. Strictly speaking, including 
fluorescence and calling it “reflectance” is incorrect as fluorescence arises from a 
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different mechanism (emission) from reflected radiance (scattering) (see Chapter 2).  
Due to the slight contamination of the reflectance signal by the fluorescence signal it 
may be technically more correct to call reflectance that contains this signal apparent 
reflectance.  Because the fluorescence signal is so small, analyzing and quantifying the 
fluorescence signal against the larger signal of scattered radiation represents a special 
challenge.  A number of methods have been derived for doing this, and some are briefly 
reviewed here. 
 
Kinetic analysis – Because fluorescence is closely related to plant photosynthetic light 
regulation (see Chapter 5) measuring the radiance over time from leaves or canopies 
exposed to rapidly changing light can reveal the pattern and amount of fluorescence 
emitted.  A simple way to do this is to take a dark-adapted leaf (or canopy), and 
suddenly exposed it to full sunlight or artificial, bright white light.  The change in 
apparent reflectance upon sudden illumination reveals a double-dip near the red edge 
due to chlorophyll fluorescence quenching (relaxation of the sudden fluorescence signal) 
which can be used to quantify both the spectral shape and size of the chlorophyll 
fluorescence peaks (Figure 11; see also Figure 7 in Chapter 5).  This can also be 
analyzed kinetically to probe the response of photosynthesis when the plant is under 
stress (see Chapter 5). 
 

 

Figure 11 
 
Apparent reflectance spectra (top panel) and 
difference spectrum (Δ reflectance, dark minus 
light state), of dark-adapted sunflower 
(Helianthus annuus) leaf following exposure to 
ten minutes of bright light. These difference 
spectra exhibit dips centered at 531 nm due to 
conversion of the xanthophyll cycle pigments 
from violaxanthin to zeaxanthin, and a double dip 
near 685 and 740 nm due to chlorophyll 
fluorescence quenching.  These rapid changes in 
apparent reflectance due to fluorescence can also 
be analyzed kinetically (as a time-series) a way to 
probe the light regulatory processes of 
photosynthesis under stress (Gamon and Surfus 
1999). 

 
 
Filters - Because fluorescence is emitted from a different process than reflectance, and 
involves a red shift (Stokes shift) in the spectrum (see Chapter 2), filters can be used to 
isolate the emitted fluorescence radiation, against a larger background of scattered 
radiation.  One way to do this is using a leaf clip (e.g. FluoWat leaf clip; Van 
Wittenberghe 2014) that includes a cutoff filter, blocking any scattered radiation beyond 
a given wavelength (typically 650 nm) (figure 12).  Under these conditions, the signal 
measured above the cutoff wavelength is, by definition, fluoresced radiation (along with 
a small amount of light leakage through the filter).  Usually, this radiation is expressed 
in absolute radiance units (Watts m-2 nm-1 sr-1), which requires conducting a radiometric 
calibration (converting relative machine units to absolute energy units).  
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Figure 12  
 
Top: Radiance spectra of a white reflectance 
standard with and without a 650 nm cutoff filter.  
 
Bottom: Apparent radiance of a leaf with or 
without a 650 nm cutoff filter.  Note that a small 
part of the apparent radiance (mostly composed of 
reflected radiation scattered back from the leaf 
surface) consists of a double-peaked fluorescence 
signal, which is only visible when the cutoff filter 
blocks the scattered light.  
 
Figure 2.3 from vanWittenberghe (2014) 

 
Spectral fitting methods - The fluorescence signal present as slight “contamination” of 
the reflected radiance from green vegetation can also be isolated using various spectral 
fitting methods when using ultraspectral sensors (sensors with extremely high spectral 
resolution).  These sensors can resolve narrow absorption features of gases present the 
Sun’s and Earth’s atmosphere (Fraunhofer and telluric lines, see top panel, Figure 13).  
These features can be resolved with ultraspectral sensors covering the range of a 
chlorophyll fluorescence spectrum (red to near-infrared region). Because the solar 
radiation in these Fraunhofer and telluric features is blocked by atmospheric absorption, 
but the radiation present in these features includes the fluorescence signal, the 
fluorescence values can be extracted with spectral fitting methods. A number of spectral 
fitting methods have been developed to extract this tiny fluorescence signal in a larger 
radiance spectrum of reflected radiation. One method (Fraunhofer Line Discrimination, 
FLD) measures the fluorescence signal in the oxygen A band (760 nm) by comparing 
the signal in this oxygen absorption band against the signal outside and immediately 
adjacent to that band (Meroni et al. 2010, Alonso et al. 2008).  Another method (Spectral 
Fitting Method, SFM), isolates the fluorescence spectrum by fitting across multiple 
atmospheric absorption features across the apparent radiance spectrum (Meroni et al. 
2010), Cogliati et al. 2015).   
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Figure 13 
 
Radiance and irradiance spectra collected over a 
corn (Zea mays) field, August 4, 2021, using 
ultraspectral spectrometers (FLoX, JB 
Hyperspectral, Dusseldorf Germany) (top 
panel). The Spectral Fitting Method (SFM 
Cogliati et al. 2015) was applied to these spectra 
to derive the fluorescence and idealized 
reflectance spectra shown in the bottom panel.  
Data courtesy Ran Wang. 

 
Fluorescence metrics - Because fluorescence is emitted as a signal across multiple 
wavelengths (as a spectrum), and there are several methods of extracting this signal, 
there are also several ways of analyzing and expressing this signal.  Common 
fluorescence metrics include the height of the fluorescence peaks in the red (around 694 
nm) or the near-infrared (around 740 nm), the integrated area under the entire 
fluorescence spectrum, or any of these metrics divided by the amount of incoming (or 
absorbed) photosynthetically active radiation (PAR). This last method, called 
fluorescence yield provides a normalized measure that tells us how much of the incident 
or absorbed radiation is converted to fluorescence, revealing key information about 
photosynthetic light regulation (see Chapter 5).  When analyzed in concert or with other 
reflectance metrics (including PRI, as discussed above), these fluorescence metrics 
provide a particularly potent way to evaluate plant photosynthetic responses in response 
to environmental conditions.  
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